webleaf.Leaf
1import torch 2from torch.nn.functional import cosine_similarity 3 4 5class Leaf(torch.Tensor): 6 """ 7 The Leaf class is a custom subclass of PyTorch's torch.Tensor, designed to represent an HTML element 8 with an associated feature embedding. It includes additional methods to calculate similarity and distance 9 between elements, as well as a boolean check for the existence of the tensor. 10 11 Methods: 12 -------- 13 similarity(other): 14 Calculates the cosine similarity between this Leaf object and another. 15 16 mdist(other): 17 Calculates the Manhattan distance (L1 distance) between this Leaf object and another. 18 19 __bool__(): 20 Returns whether the Leaf tensor is non-empty (contains elements). 21 """ 22 def similarity(self, other): 23 """ 24 Computes the cosine similarity between the current Leaf tensor and another Leaf tensor. 25 26 Cosine similarity measures the cosine of the angle between two vectors, giving a value between -1 and 1, 27 where 1 indicates perfect similarity, 0 indicates orthogonality, and -1 indicates perfect dissimilarity. 28 29 Parameters: 30 ----------- 31 other : Leaf 32 The other Leaf tensor to compare with. 33 34 Returns: 35 -------- 36 float 37 A similarity score between -1 and 1, where 1 indicates high similarity. 38 """ 39 return cosine_similarity(self.unsqueeze(0), other.unsqueeze(0)).detach().item() 40 41 def mdist(self, other): 42 """ 43 Computes the Manhattan distance (L1 distance) between the current Leaf tensor and another Leaf tensor. 44 45 Manhattan distance is the sum of the absolute differences between corresponding elements of two vectors. 46 It is a measure of how different two vectors are, with higher values indicating greater dissimilarity. 47 48 Parameters: 49 ----------- 50 other : Leaf 51 The other Leaf tensor to compare with. 52 53 Returns: 54 -------- 55 float 56 The Manhattan distance between the two tensors. 57 """ 58 return torch.sum(torch.abs(self - other)).detach().item() 59 60 def __bool__(self): 61 """ 62 Checks whether the Leaf tensor is non-empty (i.e., contains elements). 63 64 This method allows Leaf objects to be used in boolean contexts such as conditions. 65 66 Returns: 67 -------- 68 bool 69 True if the Leaf tensor has more than zero elements, False otherwise. 70 """ 71 return self.size().numel() > 0
6class Leaf(torch.Tensor): 7 """ 8 The Leaf class is a custom subclass of PyTorch's torch.Tensor, designed to represent an HTML element 9 with an associated feature embedding. It includes additional methods to calculate similarity and distance 10 between elements, as well as a boolean check for the existence of the tensor. 11 12 Methods: 13 -------- 14 similarity(other): 15 Calculates the cosine similarity between this Leaf object and another. 16 17 mdist(other): 18 Calculates the Manhattan distance (L1 distance) between this Leaf object and another. 19 20 __bool__(): 21 Returns whether the Leaf tensor is non-empty (contains elements). 22 """ 23 def similarity(self, other): 24 """ 25 Computes the cosine similarity between the current Leaf tensor and another Leaf tensor. 26 27 Cosine similarity measures the cosine of the angle between two vectors, giving a value between -1 and 1, 28 where 1 indicates perfect similarity, 0 indicates orthogonality, and -1 indicates perfect dissimilarity. 29 30 Parameters: 31 ----------- 32 other : Leaf 33 The other Leaf tensor to compare with. 34 35 Returns: 36 -------- 37 float 38 A similarity score between -1 and 1, where 1 indicates high similarity. 39 """ 40 return cosine_similarity(self.unsqueeze(0), other.unsqueeze(0)).detach().item() 41 42 def mdist(self, other): 43 """ 44 Computes the Manhattan distance (L1 distance) between the current Leaf tensor and another Leaf tensor. 45 46 Manhattan distance is the sum of the absolute differences between corresponding elements of two vectors. 47 It is a measure of how different two vectors are, with higher values indicating greater dissimilarity. 48 49 Parameters: 50 ----------- 51 other : Leaf 52 The other Leaf tensor to compare with. 53 54 Returns: 55 -------- 56 float 57 The Manhattan distance between the two tensors. 58 """ 59 return torch.sum(torch.abs(self - other)).detach().item() 60 61 def __bool__(self): 62 """ 63 Checks whether the Leaf tensor is non-empty (i.e., contains elements). 64 65 This method allows Leaf objects to be used in boolean contexts such as conditions. 66 67 Returns: 68 -------- 69 bool 70 True if the Leaf tensor has more than zero elements, False otherwise. 71 """ 72 return self.size().numel() > 0
The Leaf class is a custom subclass of PyTorch's torch.Tensor, designed to represent an HTML element with an associated feature embedding. It includes additional methods to calculate similarity and distance between elements, as well as a boolean check for the existence of the tensor.
Methods:
similarity(other): Calculates the cosine similarity between this Leaf object and another.
mdist(other): Calculates the Manhattan distance (L1 distance) between this Leaf object and another.
__bool__(): Returns whether the Leaf tensor is non-empty (contains elements).
23 def similarity(self, other): 24 """ 25 Computes the cosine similarity between the current Leaf tensor and another Leaf tensor. 26 27 Cosine similarity measures the cosine of the angle between two vectors, giving a value between -1 and 1, 28 where 1 indicates perfect similarity, 0 indicates orthogonality, and -1 indicates perfect dissimilarity. 29 30 Parameters: 31 ----------- 32 other : Leaf 33 The other Leaf tensor to compare with. 34 35 Returns: 36 -------- 37 float 38 A similarity score between -1 and 1, where 1 indicates high similarity. 39 """ 40 return cosine_similarity(self.unsqueeze(0), other.unsqueeze(0)).detach().item()
Computes the cosine similarity between the current Leaf tensor and another Leaf tensor.
Cosine similarity measures the cosine of the angle between two vectors, giving a value between -1 and 1, where 1 indicates perfect similarity, 0 indicates orthogonality, and -1 indicates perfect dissimilarity.
Parameters:
other : Leaf The other Leaf tensor to compare with.
Returns:
float A similarity score between -1 and 1, where 1 indicates high similarity.
42 def mdist(self, other): 43 """ 44 Computes the Manhattan distance (L1 distance) between the current Leaf tensor and another Leaf tensor. 45 46 Manhattan distance is the sum of the absolute differences between corresponding elements of two vectors. 47 It is a measure of how different two vectors are, with higher values indicating greater dissimilarity. 48 49 Parameters: 50 ----------- 51 other : Leaf 52 The other Leaf tensor to compare with. 53 54 Returns: 55 -------- 56 float 57 The Manhattan distance between the two tensors. 58 """ 59 return torch.sum(torch.abs(self - other)).detach().item()
Computes the Manhattan distance (L1 distance) between the current Leaf tensor and another Leaf tensor.
Manhattan distance is the sum of the absolute differences between corresponding elements of two vectors. It is a measure of how different two vectors are, with higher values indicating greater dissimilarity.
Parameters:
other : Leaf The other Leaf tensor to compare with.
Returns:
float The Manhattan distance between the two tensors.
Inherited Members
- torch.Tensor
- storage
- backward
- register_hook
- register_post_accumulate_grad_hook
- reinforce
- detach
- detach_
- norm
- solve
- lstsq
- eig
- symeig
- lu
- stft
- istft
- resize
- resize_as
- split
- unique
- unique_consecutive
- storage_type
- refine_names
- align_to
- unflatten
- rename_
- rename
- to_sparse_coo
- dim_order
- torch._C.TensorBase
- apply_
- bfloat16
- byte
- char
- contiguous
- copy_
- cpu
- cuda
- xpu
- ipu
- data_ptr
- dim
- has_names
- double
- cdouble
- element_size
- float
- cfloat
- get_device
- bool
- half
- int
- is_contiguous
- item
- long
- map_
- map2_
- ndimension
- nelement
- new
- new_tensor
- nonzero
- numel
- numpy
- requires_grad_
- set_
- short
- size
- untyped_storage
- storage_offset
- stride
- to
- tolist
- type
- abs
- abs_
- absolute
- absolute_
- acos
- acos_
- acosh
- acosh_
- add
- add_
- addbmm
- addbmm_
- addcdiv
- addcdiv_
- addcmul
- addcmul_
- addmm
- addmm_
- addmv
- addmv_
- addr
- addr_
- adjoint
- align_as
- all
- allclose
- amax
- amin
- aminmax
- angle
- any
- arccos
- arccos_
- arccosh
- arccosh_
- arcsin
- arcsin_
- arcsinh
- arcsinh_
- arctan
- arctan2
- arctan2_
- arctan_
- arctanh
- arctanh_
- argmax
- argmin
- argsort
- argwhere
- as_strided
- as_strided_
- as_strided_scatter
- asin
- asin_
- asinh
- asinh_
- atan
- atan2
- atan2_
- atan_
- atanh
- atanh_
- baddbmm
- baddbmm_
- bernoulli
- bernoulli_
- bincount
- bitwise_and
- bitwise_and_
- bitwise_left_shift
- bitwise_left_shift_
- bitwise_not
- bitwise_not_
- bitwise_or
- bitwise_or_
- bitwise_right_shift
- bitwise_right_shift_
- bitwise_xor
- bitwise_xor_
- bmm
- broadcast_to
- cauchy_
- ccol_indices
- ceil
- ceil_
- chalf
- cholesky
- cholesky_inverse
- cholesky_solve
- chunk
- clamp
- clamp_
- clamp_max
- clamp_max_
- clamp_min
- clamp_min_
- clip
- clip_
- clone
- coalesce
- col_indices
- conj
- conj_physical
- conj_physical_
- copysign
- copysign_
- corrcoef
- cos
- cos_
- cosh
- cosh_
- count_nonzero
- cov
- cross
- crow_indices
- cummax
- cummin
- cumprod
- cumprod_
- cumsum
- cumsum_
- deg2rad
- deg2rad_
- dense_dim
- dequantize
- det
- diag
- diag_embed
- diagflat
- diagonal
- diagonal_scatter
- diff
- digamma
- digamma_
- dist
- div
- div_
- divide
- divide_
- dot
- dsplit
- eq
- eq_
- equal
- erf
- erf_
- erfc
- erfc_
- erfinv
- erfinv_
- exp
- exp2
- exp2_
- exp_
- expand
- expand_as
- expm1
- expm1_
- exponential_
- fill_
- fill_diagonal_
- fix
- fix_
- flatten
- flip
- fliplr
- flipud
- float_power
- float_power_
- floor
- floor_
- floor_divide
- floor_divide_
- fmax
- fmin
- fmod
- fmod_
- frac
- frac_
- frexp
- gather
- gcd
- gcd_
- ge
- ge_
- geometric_
- geqrf
- ger
- greater
- greater_
- greater_equal
- greater_equal_
- gt
- gt_
- hardshrink
- heaviside
- heaviside_
- histc
- histogram
- hsplit
- hypot
- hypot_
- i0
- i0_
- igamma
- igamma_
- igammac
- igammac_
- index_add
- index_add_
- index_copy
- index_copy_
- index_fill
- index_fill_
- index_put
- index_put_
- index_reduce
- index_reduce_
- index_select
- indices
- inner
- int_repr
- inverse
- is_coalesced
- is_complex
- is_conj
- is_distributed
- is_floating_point
- is_inference
- is_neg
- is_nonzero
- is_pinned
- is_same_size
- is_set_to
- is_signed
- isclose
- isfinite
- isinf
- isnan
- isneginf
- isposinf
- isreal
- kron
- kthvalue
- lcm
- lcm_
- ldexp
- ldexp_
- le
- le_
- lerp
- lerp_
- less
- less_
- less_equal
- less_equal_
- lgamma
- lgamma_
- log
- log10
- log10_
- log1p
- log1p_
- log2
- log2_
- log_
- log_normal_
- log_softmax
- logaddexp
- logaddexp2
- logcumsumexp
- logdet
- logical_and
- logical_and_
- logical_not
- logical_not_
- logical_or
- logical_or_
- logical_xor
- logical_xor_
- logit
- logit_
- logsumexp
- lt
- lt_
- lu_solve
- masked_fill
- masked_fill_
- masked_scatter
- masked_scatter_
- masked_select
- matmul
- matrix_exp
- matrix_power
- max
- maximum
- mean
- median
- min
- minimum
- mm
- mode
- moveaxis
- movedim
- msort
- mul
- mul_
- multinomial
- multiply
- multiply_
- mv
- mvlgamma
- mvlgamma_
- nan_to_num
- nan_to_num_
- nanmean
- nanmedian
- nanquantile
- nansum
- narrow
- narrow_copy
- ne
- ne_
- neg
- neg_
- negative
- negative_
- new_empty
- new_empty_strided
- new_full
- new_ones
- new_zeros
- nextafter
- nextafter_
- nonzero_static
- normal_
- not_equal
- not_equal_
- orgqr
- ormqr
- outer
- permute
- pin_memory
- pinverse
- polygamma
- polygamma_
- positive
- pow
- pow_
- prelu
- prod
- put
- put_
- q_per_channel_axis
- q_per_channel_scales
- q_per_channel_zero_points
- q_scale
- q_zero_point
- qr
- qscheme
- quantile
- rad2deg
- rad2deg_
- random_
- ravel
- reciprocal
- reciprocal_
- record_stream
- relu
- relu_
- remainder
- remainder_
- renorm
- renorm_
- repeat
- repeat_interleave
- reshape
- reshape_as
- resize_
- resize_as_
- resize_as_sparse_
- resolve_conj
- resolve_neg
- retain_grad
- roll
- rot90
- round
- round_
- row_indices
- rsqrt
- rsqrt_
- scatter
- scatter_
- scatter_add
- scatter_add_
- scatter_reduce
- scatter_reduce_
- select
- select_scatter
- sgn
- sgn_
- sigmoid
- sigmoid_
- sign
- sign_
- signbit
- sin
- sin_
- sinc
- sinc_
- sinh
- sinh_
- slice_scatter
- slogdet
- smm
- softmax
- sort
- sparse_dim
- sparse_mask
- sparse_resize_
- sparse_resize_and_clear_
- split_with_sizes
- sqrt
- sqrt_
- square
- square_
- squeeze
- squeeze_
- sspaddmm
- std
- sub
- sub_
- subtract
- subtract_
- sum
- sum_to_size
- svd
- swapaxes
- swapaxes_
- swapdims
- swapdims_
- t
- t_
- take
- take_along_dim
- tan
- tan_
- tanh
- tanh_
- tensor_split
- tile
- to_dense
- to_mkldnn
- to_padded_tensor
- to_sparse
- to_sparse_bsc
- to_sparse_bsr
- to_sparse_csc
- to_sparse_csr
- topk
- trace
- transpose
- transpose_
- triangular_solve
- tril
- tril_
- triu
- triu_
- true_divide
- true_divide_
- trunc
- trunc_
- type_as
- unbind
- unfold
- uniform_
- unsafe_chunk
- unsafe_split
- unsafe_split_with_sizes
- unsqueeze
- unsqueeze_
- values
- var
- vdot
- view
- view_as
- vsplit
- where
- xlogy
- xlogy_
- zero_
- as_subclass
- T
- H
- mT
- mH
- grad_fn
- is_leaf
- retains_grad
- data
- grad
- volatile
- output_nr
- requires_grad
- name
- shape
- is_cuda
- is_mtia
- is_cpu
- is_xla
- is_xpu
- is_ipu
- is_sparse
- is_sparse_csr
- is_mkldnn
- is_mps
- is_ort
- is_vulkan
- is_quantized
- is_meta
- is_nested
- dtype
- layout
- device
- ndim
- nbytes
- itemsize
- names
- real
- imag